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An original light-scattering method often suitable for the case of anisotropic particles is explained. Two 
particular values of the scattering angle 0 are needed: 0,1, the angular position of the minimum of the H h 
component, and 0 o, the angular value for which H h = V v. This method has been successfully applied to 
the case of copolymer single crystals. 

Keywords Light scattering; optical anisotropy; size determination; copolymer single crystals 

INTRODUCTION 

In relation to light scattering by anisotropic particles 
within the Rayleigh-Gans-Debye approximation, a for- 
malism has been developed some years ago by Ravey 1- 3. 
Its originality lies in the use of the general properties of the 
so-called Ipq, integrals which allow the four components 
of the scattered light Vv, H~, Vh and Hh to be written down 
easily. The expressions obtained in this way are valid for 
scatterers of any shape of revolution. Often without 
needing any numerical computations, they can be used to 
throw light onto some interesting properties which can 
provide fast and/or easy experimental methods for the 
determination of the shape 4, of the optical anisotropy 5 or 
of electrical parameters 6- a if the particles are oriented by 
means of an electric field. 

Thus, the measurement of the ratio (H h -Hv)/H~ at 0 
= 90 ° (generally knowledge of its sign is sufficient) is a very 
sure way of ascertaining the particle shape (prolate or 
oblate spheroid). Likewise, the study of the angular 
position of the minimum of the H h component may be 
useful for the algebraic determination of the optical 
anisotropy 6 if the shape is known, or for the shape 
determination if 6 is known. Both these methods have 
been successfully applied to various suspensions of 
particles 9,1o. 

What we want to consider now is another optical 
anisotropy effect. The V~ component is believed to be 
generally greater than the H h component for any scatter- 
ing angle 0. This may often be wrong. As shown below, the 
components of the scattered light depend among other 
things on the optical anisotropy, the shape and the size of 
the scatterers. For appropriate values of these parameters, 
H h is actually greater than Vv and this circumstance may 
provide a new tool for the measurement of optical 
properties. It is the purpose of this paper to investigate 
that possibility. 

GENERAL THEORETICAL RELATIONS 

In Appendix I are briefly recalled the definitions of the Ipq, 
integrals together with the complete expressions for V v 

and H h (equations (7)). A theoretical examination of a few 
particular cases will be a good opportunity to show the 
interesting consequences arising from the properties of the 
lpq, functions and to throw some light onto the basis of 
our method. This approach is straightforward and does 
not need any numerical computation. 

lsotropic particles (6 = O) 
The following well known relation holds for 6 =0:  

H h =loooCOS20 =V~,cos20 (1) 

so that H h is always smaller than V v except for 0 =0. 

Very laroe particles 
For brevity, two cases of interest can be considered: the 

disc (co = - 1) and the rod (~o---.~), both deduced from the 
spheroid model whose semi-axes are a, a and pa. Their 
anisometry ~o is defined by e~=p z -  1. The asymptotic 
behaviour of the scattered intensities can be obtained 
most easily from the properties of the corresponding lpq, 
functions: 

Large discs of radius R. All the lpqr become negligible, 
Ipo o excepted: 

Ipoo--~2/H 2 for any p 
where 

R 0 
H = 4 ~  sin 

2 

and 2 is the wavelength in the medium. 

Large rods of length L. All the Ipq, become negligible, 
Ioo , excepted: 

I _~2  . . . . . .  (2r)! 
got H~l(Zrl)~57~Tr!r! 

where 
L 0 

H = 27z~- sin 

and Si(x) is the sine-integral function. 
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Substituting these asymptotic expressions into those of 
H h and ~,  the difference H h -  ~ ,  or better the ratio 
(H h -  V~)/V~, can be written as follows: 

For large discs: 

nh--V~ (6+2" /2  f 35 . 20~ 20 
V~ \1~-6,} ~ - s , n  ~)cos ~ 

For large rods: 

(2) 

2o) Hh-V , ,  4 - 2 6 + ~ 6 2  2 0 .  _/ ' (-6)3(l+{6)_sin 
Vv * 1 + 6 + ~ 6  z cos ~ \ - ~ _ ~ ~  (3) 

These two relations mean that a 0 value exists for which 
the asymptotic values of Hh and V~ become equal. Let us 
denote by 0b that root of the expressions in brackets in (2) 
and (3), which exists provided that 5 is positive for discs 
and negative for rods, that is to say when (6co) is negative. 

Slightly anisotropic particles (6 << 1 ) 
The terms containing 62 may be dropped in (7) (see 

Appendix I), so that we get 

°'° l ~ 0 ~ = ~  OI2 (d) 

i O 20 (deg) t 

Figure I Typical variations of the ratio (H h -  Vv) /V  v as a 
funct ion of the scattering angle 0 for rods (r) and discs (d), 
according to several optical anisotropy values (&). The parameter 
size is w = 9 

result: for a given 6 value, that initial slope becomes 
positive if w is larger than Wmi n whose expression is 

Hh-- ~ ~ 20 
2 cos2(0/2) -- 35(I1 oo -- Ioo 1)-- 2 Ioo o sin ~ (4) 

Perhaps for sufficiently low 0 values, the second term may 
be so small that the difference H h - V~ will have the sign of 
5 (Iloo - Iool), that is to say the sign of(-Sco) by virtue of 
a property of the Ipq, integrals 1- a. Then, again if fio9 is 
negative, H h - Vv could be positive or zero for a particular 
0 o value. 

Therefore, what is to be emphasized is that this event 
might arise for small particles and for large particles too, 
provided they are anisotropic ones, with a proper value of 
their optical anisotropy. 

To sum up, every time 5co is negative, it could be 
possible to find a value 0o of the scattering angle, for which 
H h = ~,  and hence to deduce some optical characteristic 
or some physical parameter of the scatterer. A more 
systematic study of this phenomenon was performed and 
since the Ipq r integrals cannot be solved analytically, 
numerical processings were involved. 

7 • 5  -~ 62~  1/2 

Wm,o = --  6\Y-  / (5) 

Then, this relation means that H h can be equal to V~ if the 
rod has at least this minimum size. 

The behaviour of discs is not so simple. Curves D and E 
prove that, in that case, the initial slope is relevant only in 
a first approximation, to know whether H h could be equal 
to ~ or not. A rigorous expression giving Wmi, cannot be 
obtained here. Let us also note (see curve D) that when the 
initial slope is negative, Hh may be equal to Vv for two 0o 
values. For the sake of clarity, only the largest 0 o will be 
considered in the remainder of this paper. It should 
correspond to the most easily measurable one in light 
scattering experiments. 

On Figures 2 and 3 are displayed numerical results of 
the 0o values for rods and discs, as a function of the 
scatterer size (w), for a set of 5 values. The asymptotic 
values (large particles) have been obtained from the 
relations (2) and (3). The Wmi. values for rods come from 
relation (5). For discs, these Wmi n had to be computed 

DISCUSSIONS AND RESULTS 

Let/9 be the radius of gyration of the scatterer and w the 
dimensionless quantity w=4np/2 .  In Figure 1 are dis- 
played some typical variations of (H h -  Vv)/V o as a fun- 
ction of the scattering angle 0 for various optical anisot- 
ropies, for rods (p--.oo) and discs (p---4)). 

According to the former discussion, curves A and B 
correspond to scatterers with a positive value of their 
product 6co and decrease monotonically from zero so that 
H h is never greater than V v. The other three curves exhibit 
the opposite behaviour. Curve C has been calculated for a 
rod whose optical anisotropy is negative (3 = -0.10). It 
can be seen that that curve increases at first until a 
maximum is reached, and then decreases in such a way 
that H h = V v for 0 o = 25.6 °. The fact that the initial slope of 
the curve is positive should be noted, because it is specific 
to such rods (3o9 <0): as soon as this slope is positive, H h 

will be equal to Vv for a certain value 0o. A series expansion 
of H h - V~ in the vicinity of small 0 leads to the following 
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Figure 2 The scattering angle 0 o for  which H h = V v as a funct ion 
of the parameter size w = 4~p/2 for rods with various negative 
values, The arrows indicate the asymptot ic values 
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Figure 3 Same as Figure 2 but for discs with various positive 
values. The hatched area is the experimental point for copolymer 
crystals 
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Figure 5 Same as Figure 2 but for Om, the scattering angle for 
which the H h component for discs is minimum. The hatched area 
is the experimental point for copolymer crystals 
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Figure 4 Same as Figure 2 but for 0 m, the scattering angle for 
which the H h component for rods is minimum 

numerically. The following conclusions can be drawn: 
(a) O0 may not exist even though 6~o is negative. This 

event arises when the size of the scatterer is smaller than 
Wmm(& 

(b) Generally speaking, the lower the optical anisotropy 
of the scatterer, the larger its size must be and conversely. 

(c) For  a given 6 value, 0 o is generally an increasing 
function of w, strongly at first and then more moderately 
(but with the occurrence of small undulations for the 
discs). Even when w = 15, the asymptotic values are far 
from being reached. 

Having measured 0 o experimentally, the use of these 
curves must then lead to knowledge of the size of the 
scatterer if & is known (and vice versa), with an accuracy 
depending on the slope of these Oo(w ) curves. That is why it 
is interesting to use a complementary method, namely the 
angular determination of the minimum of the H h com- 
ponent. As already known, this 0,, occurs at scattering 
angles less than n/2 when &o is positive and greater than 
n/2 when &co is negative. Figures 4 and 5 correspond to 
this latter case. These 0,, curves as a function of w greatly 
resemble the previous 0o curves. However, their asym- 
ptotic limits are reached within a few per cent for size 
parameter values as low as w = 5 for a rod and w = 10 for a 
disc, which is not the case for the 0 o curves. 

Let us recall these asymptotical expressions which bind 
0 m to 6: 

3 sin 4 % 4 - 2 6 + ~ 6 z ) - ( 1 - 6 ) 2 - s i n  2 % 4 - 5 6 + 6 2 ) = 0  

(6a) 

for any rod with w> 5; and 

sin2 0, ,_  1 +26 (6b) 
2 6 + 2  

for any disc with w> 10. 
Then it may be verified that the precision reached for 6 

is about 5~o if ]6] is about 0.15 and when 0,, is experimen- 
tally measured within half a degree, provided the size is 
large enough. 

Knowing 6, it is now possible by using the curves of 
Figures 2 and 3 to determine the size parameter. 0 o may be 
estimated within one degree and, for A6/6=5%, an 
accuracy ranging from 5 to 10~o on w may generally be 
expected if the experimental point lies on the quasi-linear 
part of the curve which is moderately increasing. By way 
of illustration of this method, single crystals of the 
copolymer poly(ethylene oxide)-polystyrene suspended 
in p-xylene have been used 9. For these disc-like particles 
whose dimension is 0.65/tm (from electron microscopy) 
the calculated size parameter w is about 10_+_ 1, when the 
mercury green radiation is used (2 = 0.546/~m). Then the 
use of the asymptotic expression (6b) could seem a little 
questionable. This is why we prefer a graphical de- 
termination of w and 6. The experimental values we have 
found are 0,, = 98 ° and 0o = 39 °. Taking into account the 
experimental errors visualized in Figures 5 and 3, the (6, w) 
couple which fits best both theoretical diagrams is: 6 = 
+ 0.105 + 0.005 and w = 9.5 + 1. This is in excellent agree- 
ment with the directly measured w value and with 
previous determinations of 65'1°. 

Note that in this example, the shape of the scatterer was 
known a priori. If it were not the case, a previous 
determination of the ratio (H h - Hv)/H v at 0 - 90 ° should 
have been advantageously used for that purpose 4. 
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In short  then, it m a y  be possible to deduce the size of  an 
anisotropic  scatterer by means  of only two angular  
de terminat ions :  Or,, and 0o, if any. But yet, the non-  
existence of a 0 o value m a y  be used to determine the upper  
limit of  that  size if 6 is known.  Some advantages  of  the 
me thod  are noticeable:  First, only one suspension of 
particles is needed to deduce the size. This aspect  is 
part icularly impor t an t  in the case of  molecular  aggregates 
whose structure depends on the solute concentrat ion.  
Secondly, it m a y  be applied for ra ther  large particles, 
cont ra ry  to the Z i m m  plot  technique whose ext rapo-  
lations become so close to zero that  neither the molecular  
weight nor  the radius of  gyrat ion can be attained. In 
addition, since only two 0 values have to be measured,  this 
me thod  is not  at all t ime-consuming.  When  studies of the 
size evolutions during a t ime-dependent  process are 
involved, its quickness makes  it the more  suitable because 
the difference H h -  V~ can be modula ted  as we have  
already done for the H h - H v difference 4, and then directly 
measured.  
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A P P E N D I X  I 

The I~qr inte#rals and the components  H h and Vv 
Let 9~ and 92 be the two principal optical polarizabi-  

lities excess of a scatterer in a given solvent. The optical 
anisot ropy 6 is defined as 

6 -  g l - g 2  
g~ + 292 

and m a y  be positive or  negative. Here the subscript  1 
refers to the revolut ion axis. 

Consider  the usual reference frame (s, s', z) built on the 
exterior s and  interior s' bisectors of  the scattering angle 0. 
The  normal ized interference factor of a revolution scat- 
terer is R(~b) where ~b is the angle of  its revolut ion axis with 
s. ill, f12, f13 being the direction cosines of  that  axis in the 
frame (s, s', z), the lp~ r expression is as follows: 

the integrals being extended over  all space. Their  proper-  
ties have been indicated in our  previous papers  1- 3. 

The general expressions for V~ and H h are: 

V~ = 9621002 + 66(1 - 6)Ioo x + (1 - 6)2Ioo o 

H h = 962[I2ooCOS4(0/2) + Io2osin4(O/2) 
--½11 losin20] (7) 

+ 66(1 -- 6)cos 0 [ I  1 ooC°$2(0/2) 
- Io 1 o sin2(O/2)] 

+ (1 - 6)2IoooCOS20 

For  isotropic orientat ion,  we have Ipq, = Ip, q. 
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